Table I Alkyl and Aryl Ethers

			TILICITIE	MID TIKE DILING			
Of 1-Dialkylamino-propanol-2, CH ₂ CHOR'CH ₂ NR ₂				Of beta methyl choline, CH3CHORCH2NR'3I -			
R	R'	°C. B. p.,	Mm.	M. p., °C.	Formula	Calcd.	Iodine, % Found
CH_3	CH ₃	113-116	760	$155.5 - 156.0^a$	$C_7H_{18}ONI$	48.99	48.99 49.12
	C_2H_5	133-135	760	144.5^{b}	$C_8H_{20}ONI$	46.48	46.51 46.35
	i - C_3H_7	140-145	758	145.5^b	$C_9H_{22}ONI$	44.21	44.00 44.10
	n-C ₄ H ₉	55-58	18	$156.5 - 157.0^{\circ}$	$C_{10}H_{24}ONI$	42.15	42.30 42.16
	C_6H_5	143-144	18	$139.5 – 140.0^d$	$C_{12}H_{20}ONI$	39.53	39.41 39.45
	o-C ₆ H ₄ CH ₃	132-135	18	$141.0 – 142.0^d$	$C_{13}H_{22}ONI$	37.88	38.03 37.91
	m-C ₆ H ₄ CH ₈	136-140	12	$130.0 - 131.0^d$	$C_{13}H_{22}ONI$	37.88	37.82 37.91
	p-C ₆ H ₄ CH ₃	140-143	15	$140.0 – 141.0^d$	$C_{13}H_{22}ONI$	37.88	37.81 37.85
C_2H_5	CH_3	46-47	12				
	C_2H_5	70-72	18				
	i - C_3H_7	60-63	10	$129.0 - 130.0^{\circ}$	$C_{12}H_{28}ONI$	38.60	38.80 38.83
	n - C_4H_9	63-65	10				
	C_6H_5	125-126	11				
	$o-C_6H_4CH_3$	141	12	128.0^{b}	$C_{16}H_{28}ONI$	33.62	33.60 33.55
	m-C ₆ H ₄ CH ₃	141 - 142	10	$129.0 – 130.0^d$	$C_{16}H_{28}ONI$	33.62	33.50 33.52
	p-C ₆ H ₄ CH ₃	144-146	14	$138.0 - 139.0^{c}$	$C_{16}H_{28}ONI$	33.62	33.50 33.65

[&]quot;Crystallized from chloroform-ethyl acetate solution. b Crystallized from amyl acetate-amyl alcohol solution. Crystallized from amyl acetate. The oily product was dissolved in acetic anhydride and precipitated over a period of months by layering with dry ether.

methyl iodide in toluene solution. The reaction was vigorous and required cooling. The average yields were 65–80%.

 β -Aryloxy and β -alkoxy-propyl-diethyl amines were treated with excess ethyl iodide in toluene solution. The mixture was heated on a water-bath under reflux for several hours. The yields obtained were 35–50%. Table I gives the properties of the substances prepared.

CHEMICAL LABORATORY NEW YORK UNIVERSITY NEW YORK, N. Y.

A. R. GOLDFARB

RECEIVED JUNE 9, 1941

p-Bromophenacyl Esters

Three unreported p-bromophenacyl esters of acids have been prepared by the method outlined by Shriner and Fuson.¹ The melting points were taken with calibrated total immersion Anschütz thermometers.

 $p\text{-Bromophenacyl Oxalate.}—The fine white plates from acetone, which were nearly insoluble in absolute alcohol, melted at 242 <math display="inline">^\circ$ with decomposition.

Anal. Calcd. for $C_{13}H_{12}O_6Br_2$: C, 44.65; H, 2.50. Found: C, 44.50; H, 2.56.

Methyl p-Bromophenacyl Succinate.—Methyl hydrogen succinate was prepared by reaction of succinic anhydride with methanol, the product being recrystallized from carbon disulfide. The p-bromophenacyl ester formed white plates when recrystallized from dilute methyl alcohol, m. p. $104.6-104.8^{\circ}$.

Anal. Calcd. for $C_{13}H_{13}O_{\delta}Br$: C, 47.43; H, 3.98. Found: C, 47.45; H, 4.08.

Methyl p-Bromophenacyl Glutarate.—Sodium methylglutarate was prepared by a method analogous to that reported for sodium ethylglutarate.² White plates of the p-bromophenacyl ester are formed on recrystallization from dilute methyl alcohol, m. p. 46.6–46.8°.

Anal. Calcd. for $C_{14}H_{15}O_{5}Br$: C, 48.91; H, 4.41. Found: C, 48.96, 48.99; H, 4.53, 4.57.

DEPARTMENT OF CHEMISTRY THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

David T. Mowry Wallace R. Brode

⁽¹⁾ Shriner and Fuson, "Identification of Organic Compounds," John Wiley and Sons, Inc., New York, N. Y., 1935, p. 144.

RECEIVED JUNE 2, 1941

⁽²⁾ Mol, Rec. trav. chim., 26, 379 (1907).